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Abstract— The key objective of the present work is to study 

the parameters affecting the static behavior of convex cable roof 

beams with central and edge rings, taking into consideration the 

nonlinear behavior to propose an appropriate approach for their 

preliminary calculations and design aspects. In such roofs, the 

cables are commonly suspended radially and attached at the 

perimeter of the roof to an elastically deformable compression 

edge ring and at the center to tension steel rings. A structure with 
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a specific geometrical and mechanical properties has been 

analyzed based upon the minimization of the total potential 

energy by the conjugate gradient method to produce 

nondimensional curves, tables, and transformation expressions 

used for the preliminary design. The suggested preliminary 

approach is applicable for any structure with similar 

characteristics and can be used to determine the maximum roof 

deformations, maximum tensions of the sagging cables, minimum 

tensions of the hogging cables, and the maximum normal forces 

in the rings. It is noted that the method show good results 

compared to the exact analysis methods commonly used by 

commercial programs in structural analysis, and can be readily 

developed to be used for concave, convex-concave cable beam 

roofs with different plans of view. 

I. INTRODUCTION 

N recent decades, cable structures have been 

considered an economical alternative over traditional 

portal and conventional structural systems for their 

mechanical properties and load carrying efficiency. Cable 

elements work only in pure axial tension and can carry large 

loads much more than their own weight. Therefore, their 

Approximate static analysis of circular convex 

cable roof beams in the existence of central and 

edge rings  

لكمرات الأسقف الدائرية المحدبة  التقريبي الإستاتيكيالتحليل 

وحافة مركزيةحلقات  في وجودذات الكابلات   

Y. E. Aggag, M. Naguib, S. El Bagalaty, and A. M. Abbas 

KEYWORDS: 

Tension structures, 
cables , circular roofs, 
convex beams, 
preliminary analysis 

السلوك الاستاتٌكً لكمرات الأسقف  علىمن هذا العمل هو دراسة العوامل التً تؤثر  الرئٌسًالهدف  
نهج  لاقتراحالغٌر خطً  السلوك الاعتبار فًمع الأخذ  ،حلقات مركزٌة وحافة ذات ة ذات الكابلاتدبالمح

عادة ما ٌتم تعلٌق الكابلات  ،. فً مثل هذه الأسقفوالتصمٌم الابتدائٌةفً الحسابات  للاستخداممناسب 
حلقات شد معدنٌة. وقد  إلى وفً المركزحلقة ضغط ذات تشوه مرن  إلىشعاعٌا حٌث تعلق فً محٌط السقف 

محددة إستنادا على طرٌقة تصغٌر طاقة الوضع باستخدام  تم تحلٌل منشأ له خصائص هندسٌة ومٌكانٌكٌة
.  الابتدائًالتصمٌم  فًتستخدم  وعلاقات للتحوٌل لا بعدٌه جداول، منحنٌاتطرٌقة المنحدرات المتبادلة لإنتاج 

 وٌمكن استخدامهاخصائص مماثلة  وذ منشأأي  علىقابلة للتطبٌق  المقترحة الابتدائٌةطرٌقة التصمٌم 
فً الكابلات المقوسة  الأدنىفً الكابلات المعلقة، الشد  الأقصىلحساب التشكلات القصوى للسقف، الشد 

الطرٌقة أظهرت نتائج جٌدة مقارنة مع طرق التحلٌل  وٌلاحظ أنفً الحلقات.  القصوى والقوي العمودٌة
فً  لاستخدامهاتطوٌرها بسهولة  وأٌضا ٌمكنالدقٌقة التً تستخدمها عادة برامج التحلٌل الإنشائً التجارٌة 

 مختلفة. مساقطذو المقعرة ذات الكابلات -والمحدبةكمرات الأسقف المقعرة 
 

I 
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spacing can be greatly increased to cover long spans without 

causing stability issues [1]. Also, from the architectural point 

of view, their lightness offer an infinite number of possibilities 

for shaping unique and elegant three dimensional roofing 

forms with rectangular, rhomboid, circular or elliptical plans 

[     

Disadvantages also appear as the high geometric 

nonlinearity of cables is always a challenge to the stability of 

structures. When a cable subjected to variable loading 

conditions, it undergoes large movements that increase the 

difficulty of the analysis and design procedure [  . Therefore 

the principle of superposition does not acceptable for such 

systems, and it is strongly recommended to take the effects of 

cables flexibility and their large deformations into concern 

when establishing equilibrium equations [ ]. 

 Thus, preliminary techniques are valuable in order to 

reduce the computational effort exerted in estimation of cable 

sizes, their pretention forces, initial costs and materials 

required [  . Many analytical researches supposed infinitely 

rigid supports for cable edges, and ignore deformations and 

flexibility of the supporting structures, i.e., edge rings, stays, 

and columns. The first effort adopts the former principle for 

preliminary analysis of cable networks has been carried out by 

Gero [ ]. The method is based on preforming geometrically 

nonlinear analyses to produce scaling relationships and charts. 

These relationships are used for transformation of a much 

larger analysis problem called the prototype to a smaller 

network denoted as the model. The prototype and the model, 

should have similar geometries, so that their corresponding 

characteristics also be similar. 

However, studies show that the deformability of the 

boundary at joints of cable attachments, results a loss in the 

tension of the cables and a variation in the net deflections [  . 

Thus the static and dynamic characteristics of a cable structure 

will vary depending upon the stiffness of the supporting 

system. The latter in turn is a function of the element 

geometry and type of the material used. Useful approximate 

procedures for certain cases of cable systems have been 

developed by Talvik [  , Majowiecki, and Zoulas [  . Also, 

Szabó et. al. [  ] supposed another preliminary method for 

analysis of cable networks with elliptical plan view, where 

cable ends are attached to an edge beam. Isabella 

Vassilopoulou and Charis J. Gantes [  ], have been extending 

the transformation relations that established by Gero [ ] to be 

applicable for circular cable networks supported by an 

elastically deformable ring beam, taking into consideration the 

ring stiffness and the curvature of the cables, i.e. sag and rise 

to span ratios. 

The main objective of the present work is to study the static 

behavior of circular convex cable roof beams, through 

geometrically nonlinear analyses. Tables and graphs illustrate 

the response are given in nondimensional form, and represent 

the guidelines to derive transformation relations used for the 

preliminary design of such roofs. The analysis is carried out 

by a FORTRAN computer program based on the minimization 

of the total potential energy (T.P.E.) of the structure using the 

conjugate gradient method [  ]. Selected examples have been 

resolved to verify and confirm the results obtained using 

SAP2000 [  ]. 

II. MODEL CHARACTERISTICS AND PARAMETRIC STUDIES 

In case of roofs with circular plans, cable beams can be 

distributed radially and attached at the center to a small steel 

tension ring and at the perimeter to a compression edge ring 

commonly made of prestressed concrete with a square or a 

rectangular cross sections, as shown in Figs. 1(a), (b), (c), and 

(d) [  ]. A study of a convex cable system of the type shown 

in Fig. 1(b) is presented to determine its static response for 

variation in particular significant parameters now follows.  

These parameters include the cable sizes, pretension 

forces, and their curvatures.  Also the effect of the rigidity and 

deformability of flexural elements on the behavior are 

included. The study is carried out considering one variable 

parameter, and others are constant in each case. The net shown 

in Fig. 2, with various sections of structural elements shown in 

Fig. 3, is proposed for the analysis. 

To simplify notations and in order to avoid 

misunderstanding, in case of equal properties for both the 

sagging and the hogging cables, each of the extensional 

rigidity, the pretension force, and the cables curvature may be 

termed as EA, H, and f/L respectively.  

 

  
(a) (b) 

  

(c) (d) 

Fig. 1. Circular cable roofs with cables suspended in radial planes between 

central tension ring/s and outer edge ring/s: (a) Simply suspended cable roof; 

(b) Convex cable beam structure; (c) Concave cable beam structure; (d) 

Convex-concave cable beam structure. 

 

The static analysis is carried out for a cable net having a 

span of 80m, sag to span ratio 4%, and rise to span ratio 4%. 

The net consists of 42 pairs of convex cable beams distributed 

radially between two steel central rings and a single R.C. edge 

ring, where the diameters ratio for central to edge rings is 

considered as 8.0%. The cable beam consists of a dual-cable 

counter stressed system with properties shown in Table. 1. 

Both the lower sagging, and the top hogging cables have 

extensional rigidities of       MN, and the same pretension 

forces of 570 KN. While, the 12 struts are made of steel pipes 
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with extensional rigidity of 19.95 MN. 

 

 
 

 

Fig. 2. Plan view of radial convex cable beam structure 

 

 

(a) 

 

             (c)                                (d)                        (e) 

Fig. 3. Convex cable beam structure: (a) Cross section through the roof; (b) 

Cross section of the R.C. edge beam; (c) Cross section of the R.C. column; (d) 

Cross section of the steel central ring. 

 

Table. 2 shows the characteristics of the flexural elements 

utilized in the analysis. The edge ring has a rectangular 

reinforced concrete section with extensional rigidity of       

MN. While, central rings have a rectangular hollow steel 

section with extensional rigidity      MN. Each cable 

connection at the edge ring is supported vertically with 

reinforced concrete columns have circular sections with 

extensional rigidity of       MN. All Columns have a mean 

height of 10 m and supposed to be fixed at base. 

 For circular roofs in which the cable beams radiate out 

from a centrally suspended tension ring, it is convenient to 

express the distributed load applied on each beam as a two 

symmetrically triangular distributed loads with a maximum 

intensity placed on the upper cable [  ]. Uniformly distributed 

loads used are based on the following values: 

• Dead load of the roof =     N/m
  
of projected area 

• Live loads = 500 N/m
 
 of projected area 

For the purpose of analysis, the triangularly distributed loads 

are assumed to be applied as a system of equivalent 

concentrated forces equally spaced and applied on the joints of 

the hogging cable.  

The obtained results are prepared in a nondimensional 

formulae for the maximum positive deflection of the net (w), 

maximum radial deformations of the edge ring (ue), the 

minimum hogging cable tension (Tp), the maximum sagging 

cable tension (Ts), the upper central ring tension (Pp), the 

lower central ring tension (Ps), the edge ring compression (Pe), 

and the maximum bending moment at the level of fixed base 

(Mb).  

 
TABLE   

PROPERTIES OF CABLES UTILIZED IN THE PARAMETRIC 

STUDY 

Cross sectional area , A (cm )    

Modulus of elasticity, E (MPa)        

Pretension force, H (KN)     

Weight per unit length, (N/m)       

 

 

 

 

TABLE   
PROPERTIES OF FLEXURAL ELEMENTS UTILIZED IN THE 

PARAMETRIC STUDY 

Parameters Edge ring Column 
Central 

rings 

Cross sectional area , A 

(m ) 
                  

Modulus of elasticity, E 
(MPa) 

                   

Moment of inertia, Ixx 

(m ) 
            1.29×10-  

Moment of inertia, Iyy 
(m ) 

            4.33×10-  

Moment of inertia, Izz  

(m ) 
            2.99×10-  

Weight per unit length, 
(KN/m) 

                  

Many study parameters are considered as: 

A. Effect of the curvature of cables and the load intensity on 

the response  

In general, geometric nonlinearity is a principle feature of 

cable structures analyzing. It is affected by the stiffness of the 

structure which is a function of the pretension forces, 

curvature of the cables, and the stiffness of the supporting 

system [  ]. Many researchers suggested that the satisfactory 
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stiffness of the cable net will be accomplished if the maximum 

sag of the sagging cable is within 4% and 6% of the span [  ].  

The beams are analyzed in order to provide insight into the 

behavior of the system due to the cables curvature under 

varying loading intensities from     N to      N. Different 

cases of equal sag and rise to span ratios with f/L = 3%, 4%, 

5%, and 6% are considered.  

The deformed shape of the structure is sketched in Fig     

Also, values of maximum deflections of the net along z axes, 

maximum deformations of the edge ring, maximum and 

minimum cables tensions, and maximum normal forces of 

rings are plotted in Figs.   to 13. 

 

It is noted that: 

   The system becomes stiffer and responds in less nonlinear 

manner with increasing of the load intensity and sag/rise 

to span ratios. 

   The nonlinear response of the cables causes a nonlinear 

response of the rings.  

   Due to rising loading of the net, the tension change in the 

sagging cables is much larger than that in the hogging 

cables, therefore the sagging cables may be properly 

termed as the primary cables, whilst the hogging cables 

are called the secondary cables, Fig. 5(a).  

   The tension along a cable slightly increases towards the 

edge ring, such as the vertical component is increased to 

balance the increased shear force due to the existing 

loads, although its horizontal component remains 

constant.    

   The rate of change in the tensile force of the cables is 

small from segment to another. Thus, the design of 

tension for the whole cable can be adopted as the same 

value without any considerable loss in economy. 

   The principal mode of action of the edge ring is axial 

compression, while that for both central rings is direct 

axial tension, Fig. 5(b). Therefore, in the final deformed 

shape of the net, opposite joints of the edge ring are 

approaching each other, Fig. 4(c). 

   Increasing the sag/rise to span ratios cause a decrease of 

the maximum deflections of the net, the maximum tension 

of sagging cables, tensions of the lower central ring, and 

compressive force of the edge ring. While, tensions of the 

upper central ring and hogging cables are increased.  

 

 

 
 

 (a) Cable tensions and column compressions 

 

 

 
(b) Central ring tensions and edge ring compression 

 

Fig. 5. Sketches of normal forces due to the case of dead + live loads  

 
 

(a) Deformed shape due to pretension forces only 

 

 

 

(b) Deformed shape due to the case of dead + live loads 

 
 

 
 

 
 

(c) Deformation of rings  
 

Fig. 4. Illustrative sketches of the deformed structure 

Initial shape Deformed shape 

Pe=- 6980 KN 

 

Pp= 2100 KN 
 

Ps= 4960 KN 

 

Tp= 318 KN 

 

Ts= 751 KN 

 



MANSOURA ENGINEERING JOURNAL, (MEJ), VOL. 43, ISSUE  , SEPTEMBER                                                                     C:    

 

With the following figures, Figs. 6 to 13, the following 

symbols are used to define the cable curvature case: 

 

 
 

Fig. 6. Variation of maximum net deflections with cables curvature and load 

intensities 

 
 

 
 

Fig.  . Variation of central ring deflections with cables curvature and load 
intensities 

 

 

 
 

Fig.  . Variation of sagging cable tensions with cables curvature and load 
intensities 

 

 
 

Fig.  . Variation of hogging cable tensions with cables curvature and load 

intensities 

 

 

 
 

Fig.   . Variation of upper central ring tensions with cables curvature and 

load intensities 
 
 

 
 

Fig.   . Variation of lower central ring tensions with cables curvature and 

load intensities 
 

 

 
 

Fig.   . Variation of edge ring deformations with cables curvature and load 

intensities 
 
 

 
 

Fig.  . Variation of edge ring compression forces with cables curvature and 
load intensities 
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B.  Effect of cable sizes on the response  

In the latter, the analysis is carried out under the load 

combination of dead + live loads with a uniform intensity of q 

= 900 N/m
 
. The same cable roof is reanalyzed for varying 

cable sizes ranged from EA = 83 MN to 680 MN. Three cases 

are considered as; Case (1): the extensional rigidity of hogging 

cables is kept constant at       MN, while that of sagging 

cables are varied, Case      the extensional rigidity of sagging 

cables are kept constant at       MN, while that of hogging 

cables are varied, Case (3): both of the extensional rigidity of 

hogging cables and sagging cables are varied.  

With reference to Figs. 14 to   . We can shortly note that: 

   Increasing sizes of both the hogging cables and/or the 

sagging cables, results a decrease of the maximum 

deflections of the net.  

   For Cases ( ) and ( ), increasing of cable sizes leads to 

reduce the hogging cable tensions, deformations and 

compression forces of the edge ring. On the other hand, 

increasing of cable sizes in Case ( ) causes an increase on 

the same parameters. 

   Sagging cable tensions slightly increase with increasing 

of cable sizes in Cases ( ) and (3), while they decrease 

with increasing cable sizes in Case ( ). 

With the following figures, Figs.    to   , the following 

symbols are used to define the cable size case: 

 

 

 
 

 

 

 
 

Fig.   . Variation of maximum net deflections with cable sizes 
 

 
 

Fig.   . Variation of central ring deflections with cable sizes 
 
 
 

 

 

 

 
 

Fig. 16. Variation of sagging cable tensions with cable sizes 
 
 
 

 
 

Fig. 17. Variation of hogging cable tensions with cable sizes 
 
 
 

 
 

Fig. 18. Variation of edge ring deformations with cable sizes 
 
 
 

 
 

Fig. 19. Variation of edge ring compression forces with cable sizes 

 



MANSOURA ENGINEERING JOURNAL, (MEJ), VOL. 43, ISSUE  , SEPTEMBER                                                                     C:    

 

C. Effect of cable pretension forces on the response  

Selecting the appropriate level of pretension is essential to 

keep cables always in tension and never become slack to avoid 

large deformations and formation of flat regions and fluttering 

due to unsatisfactory stiffness under any load combination 

[  ].  

The cable roof is analyzed for three levels of varying 

pretension forces ranged from H = 300 to 1200 KN. Level (1): 

the pretension forces of hogging cables are kept constant at 

570 KN, while that of sagging cables are varied, Level (2): the 

pretension forces of sagging cables are kept constant at 570 

KN, while that of hogging cables are varied, Level (3): both of 

the pretension forces of hogging cables and sagging cables are 

varied.  

Results of the analysis are plotted in Figs. 20 to 25. Where, 

the following symbols are used to define the pretension force 

level: 
 

 

 

 
 

Fig.     Variation of maximum net deflections with cable pretension forces 

 

 
 

Fig.   . Variation of central ring deflections with cable pretension forces 
 

 
 

Fig.   . Variation of sagging cable tensions with cable pretension forces 

 
 

Fig.   . Variation of hogging cable tensions with cable pretension forces 

 

 
 

Fig.   . Variation of edge ring deformations with cable pretension forces 

 

 
 

Fig.   . Variation of edge ring compression forces with cable pretension 
forces 

 

Generally, increasing of the cable size or its pretension 

force beyond the required values that keep cables always in 

tension without slacking causes a defect of utilizing of the 

cable cross-sectional area and lessen the effect of the 

pretension force. Hence, it is recommended that the design of 

cables and their cross-sectional areas are such that the 

maximum load the cables are expected to carry is less than or 

equal to 50% of their breaking strength, [19]. With reference 

to Figs. 20 to 25, it is noted that: 

   For Level (1), as the pretension forces of the sagging 

cables increase, the values of compression forces of the 

edge ring increase, on the other hand, the maximum 

deflections of the net decrease and the cable tensions are 

increased.  

   For Level (2), as the pretension forces of the hogging 

cables increase, the values of compression forces of the 

edge ring increase, also, the maximum deflection of the 

net and the cable tensions are increased.  

   Level (3) generally provides larger values of cable 

tensions and compression forces of the edge ring. 
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D. Effect of the stiffness of central rings and the diameters 

ratio on the response  

In case of utilizing radial cable roofs, existence of tension 

rings leads to a more uniform distribution of cables, allows to 

use cable units with equal lengths, and reduces the number of 

cable terminals required. Figs. 26 to 3 , show the effect of 

increasing the stiffness of both upper and lower central rings, 

ErAr = 1230 MN to 19700 MN, on the response for two values 

of the diameters ratio δ = 8% and 25%.  

It is observed that, although varying of the stiffness and the 

diameters ratio affect the radial and vertical deformations of 

the central rings, it has marginal effects on the subsequent 

deformations and internal forces of other net elements. 

The following symbols are used with Figs.    to   , to 

define the diameters ratio used: 

 
 

 
 

Fig.   . Variation of net deflections with central rings stiffness and diameters 

ratio. 

 

 
 

Fig.   . Variation of central ring deflections with central rings stiffness and 

diameters ratio. 

 

 
 

Fig.   . Variation of lower central ring deformations with central rings 

stiffness and diameters ratio. 
 

 
 

Fig.     Variation of sagging cable tensions with central rings stiffness and 
diameters ratio. 

 

 
 

Fig.     Variation of hogging cable tensions with central rings stiffness and 
diameters ratio. 

 

 
 

Fig.     Variation of edge ring compression forces with central rings stiffness 

and diameters ratio. 

 

E. Effect of the stiffness of the boundary structure on the 

response  

Figs. 32 to 38, show results due to the variation of edge ring 

stiffness, EeAe =      to 36720 MN for three values of load 

intensities q           , and 9   N/m
 
.While in Figs. 39 to 45, 

the effects of column stiffness EcAc =       to 68340 MN on 

the response are presented for three values of edge ring 

stiffness EeAe =     ,     , and 36720 MN. The main 

features of the results are as follows: 

   The edge ring responses in a nonlinear manner due to the 

nonlinear behavior of the cables, which in turn greatly 

affects the response of the columns especially in case of 

low stiffness values of the edge beam.  

   The stiffness of a cable beam decreases with increasing 

flexibility and movements of the supporting system. 

When the supporting boundary is less stiff, as in case of 

cable ends not fixed but attached to elastic and 

deformable edge rings, the expected deflections are larger 
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and the corresponding cable tensions are smaller.  

   Therefore, as the stiffness of the edge ring increases, the 

resultant deformations of the net are decreased. At the 

same time, each of the maximum tension in cables, the 

tension force of central rings, the compression force of the 

edge ring, and the maximum bending moments of the of 

columns are decreased.  

   Column stiffness does not significantly influence the net 

response, but slightly affects the internal forces of the 

edge ring. 

With the following figures, Figs.    to   , the following 

symbols are considered to define the load intensity applied as: 

 

 

 

 

 
Fig.   . Variation of net deflections with edge ring stiffness and load 

intensity. 
 

 

 
Fig.   . Variation of central ring deflections with edge ring stiffness and load 

intensity. 
 
 

 

 
Fig.   . Variation of sagging cable tensions with edge ring stiffness and load 

intensity. 

 

 

 
Fig.   . Variation of hogging cable tensions with edge ring stiffness and load 

intensity. 

 

 

 
Fig.   . Variation of edge ring deformations with edge ring stiffness and load 

intensity. 

 

 

 
Fig.   . Variation of edge ring compression forces with edge ring stiffness and 

load intensity. 

 

 

 
Fig.     Variation of moments at column base with edge ring stiffness and 

load intensity. 
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With the following figures, Figs.    to   , the following 

symbols are used to indicate the utilized stiffness of the edge 

ring: 

 
 

 
 

Fig.   . Variation of net deflections with columns stiffness 

 
 

 
 

Fig.   . Variation of central ring  deflections with columns stiffness 

 
 

 
 

Fig.   . Variation of sagging cable tensions with columns stiffness 

 
 

 
 

Fig.   . Variation of hogging cable tensions with columns stiffness 

 

 
 

Fig.   . Variation of edge ring deformations with columns stiffness 
 

 
 

Fig.   . Variation of edge ring compression forces with columns stiffness 

 

 
 

Fig.   . Variation of moments at column base with columns stiffness 

 

III. TRANSFORMATION RELATIONSHIPS 

A well-known procedure used for preliminary design of 

suspension cable roofs has been presented by [  ]. This 

method provides nondimensional graphs and tables 

constructed using a computer program based on the energy 

minimization approach. It can be used to obtain the 

nondimensional quantities for deflections, cable tensions and 

natural frequencies for several types of cable beams with rigid 

supports and subjected to uniformly distributed loads. The 

method suggested that: 

   Two systems have similar characteristics if: (i) the ratio of 

applying load to the cables extensional rigidity (qSl/EA) is 

constant, (ii) the sag/ rise to span ratios (fs/L) and (fp/L) 

are constant, and (iii) the ratio of pretension force to the 
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cables extensional rigidity (H/EA) is constant. 

Consequently their corresponding response is expected to 

be identical. Thus. (iv) The maximum deflection to span 

ratio (w/L) is constant, and (v) the ratio of maximum 

tension to the cables extensional rigidity (Ts/EA) is 

constant. 

   The preliminary design of the rings can be carried out by 

assuming that their normal forces are principally 

functions of the forces established by the horizontal 

components of the cable tensions. Therefore: (i) the 

tension of the upper central ring is directly proportional to 

the tension forces of the hogging cables      ), (ii) the 

tension of the lower central ring is directly proportional to 

the tension forces of the sagging cables      ), and (iii) 

the tension of the edge ring is directly proportional to the 

tension forces of both the hogging and sagging 

cables         ). 

According to these assumptions and in the progression of 

our work to achieve transformation relationships to account 

for the edge ring flexibility and the cables curvature. It is 

supposed that: 

   Since columns of radial cable networks only marginally 

affect their stiffness. In order to reduce the computational 

effort, each of, the z- displacements of the joints of the 

edge beam, the x- displacements for the two joints of the 

edge beam lie on the x-axis, and the y-displacements for 

the two joints of the edge beam lie on the y-axis were 

assumed to be restrained, so that the rigid body motion is 

prevented. 

   The proposed relationships are regarding the main 

characteristics that significantly influence the response of 

the network; and can be summarized in: (i) the 

extensional rigidity of the cables, where (EsAs = EpAp = 

EA), (ii) the cables curvature, where ( fs/L = fp/L =f/L), 

(iii) the pretension force of the cables, where (Hs = Hp = 

H), (iv) the axial stiffness of the edge ring, (v)the 

maximum positive deflection of the net, (vi) the 

maximum and minimum tensions of the sagging and 

hogging cables (vii) the tensions forces of the upper and 

lower central rings, and (viii) maximum radial 

deformations and  compression force of the edge ring. 

The transformation relationships suggested for scaling of 

the prototype to the model with elastically deformable edge 

ring are presented. In the following m and t are subscripts 

point to the model and the prototype, respectively.  

2

/

/

m m

m t t t

f LqSL qSL

EA EA f L

    
     

     
                                          ( ) 

 Maximum applied load to cable extensional rigidity ratio.  
2

/

/

m m

m t t t

f LH H

EA EA f L

    
     

     
                                              ( ) 

Pretension force to cable extensional rigidity ratio. 

2

/

/

e e e e m m m

t t tm t

E A E A f L N

EA EA f L N

      
       

       
                             ( ) 

Edge ring extensional rigidity to cable extensional rigidity 

ratio. 
2

/

/

r r r r m m m

m t t t t

E A E A f L N

EA EA f L N

      
       

       
                            ( ) 

Central ring extensional rigidity to cable extensional rigidity 

ratio. 

m t

w w

L L

   
   

   
                                                                     ( ) 

Maximum net deflection to span ratio. 

e e

m t

u u

L L

   
   

   
                                                                     ( ) 

Maximum edge ring radial deformations to span ratio. 
2

/

/

s s m m

t tm t

T T f L

EA EA f L

    
     

     
                                              ( ) 

Maximum sagging cables tension to cable extensional rigidity 

ratio. 
2.55

/

/

p p m m

t tm t

T T f L

EA EA f L

    
     

     
                                           ( ) 

Minimum hogging cables tension to cable extensional rigidity 

ratio. 
2.55

/

/

p p m m m

t t tm t

P P f L N

EA EA f L N

      
       

       
                               ( ) 

Maximum upper central ring tension to cable extensional 

rigidity ratio. 
2

/

/

s s m m m

t t tm t

P P f L N

EA EA f L N

      
       

       
                                (  ) 

Maximum lower central ring tension to cable extensional 

rigidity ratio. 
2

/

/

e e m m m

t t tm t

P P f L N

EA EA f L N

      
       

       
                                (  ) 

Maximum edge ring compression to cable extensional rigidity 

ratio. 

In order to verify the accuracy of the transformation 

relationships, several models are analyzed with different 

values of number of cable beams and sag/rise to span ratios. 

The analysis is carried out with keeping other parameters 

unchanged in both prototype and model. Table   shows the 

results from different analyses, based on a prototype of 42 

cables, and several models with 10 to 80 cables with step of 10 

cables.  

The results obtained for the maximum tensions and 

deflections show that the model and the prototype are in 

excellent agreement. Also, Table   shows the results for a 

prototype with a sag/rise to span ratio of 4% and models with 

ratios between    % and 6% with step 0.5%. In this case, the 

resulting error for maximum tensions was within - % and -3% 
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while that for deflections was within - % and - %. 

 
TABLE   

CONVEX CABLE BEAMS, (SAG=RISE): MAXIMUM TENSIONS AND 
NET DEFLECTIONS FOR DIFFERENT NUMBER OF CABLE BEAMS 

qSL/EA       ×  -  

 

Number of 

cable beams  

N 

Net deflection 

     w/L 

Max cable 

tension 

      Ts/EA 

Prototype                  

Model                  

Model                  

Model                  

Model                  

Model                  

Model                  

Model                  

Model                  

 

 
TABLE   

CONVEX CABLE BEAMS, (SAG=RISE): MAXIMUM TENSIONS AND 

NET DEFLECTIONS FOR DIFFERENT CABLES CURVATURE 

qSL/EA =    ×  -  

 
Sag/Rise 

f/L 

Net deflection 

     w/L 

Max cable 

tension 

      Ts/EA 

Prototype                  

Model                    

Model                  

Model                    

Model                  

 

IV. PRELIMINARY ANALYSIS GRAPHS AND 

ILLUSTRATIVE EXAMPLES 

The 80m model previously illustrated in section II again is 

analyzed for the construction of the graphs. In this analysis, 

sizes and pretension forces for both the sagging and the 

hogging cables are kept equal. All cable sizes are assumed 

according to ASTM  A    −   a standards [  ], with nominal 

diameters ranged from 30mm to 63.5mm in order to have a 

range of cable extensional rigidity from 100 to 400 MN.  

The supposed load intensities and the pretension are taken 

as percentage of the cable extensional rigidity. The study is 

carried out for a wide range of load intensities, qSL/EA   

    ×  
- 

 to 5×  
- 

, and pretension forces, H/EA    ×  
- 

 to 

 ×  
- 

. 

Graphs achieved are dimensionless and can be applied for 

all systems of units. They provide the maximum and minimum 

tensions, maximum positive deflections of the net, and 

maximum normal forces and deformations of rings (Figs.    

to   ) for EeAe/EA =     to 5  . Also, values of the same 

nondimensional parameters mentioned above are tabulated in 

Tables   to 12. 

When the preliminary graphs were constructed, the 

outcomes of the response in the state in which the final 

tensions in part of hogging cables are approaching to zero 

were eliminated. In order to provide accurate and precise 

results. Whereas, the loss of the tensile strength in the cables 

causes the net to be unstable. This occurs significantly when 

the load is greater than the pretension force. 

 

A. ILLUSTRATIVE EXAMPLE (1) 

In order to demonstrate the use of the non-dimensional 

diagrams and tables given in this paper, the preliminary design 

calculations for a 100 m diameter circular cable roof with 

radial convex cable beams with design parameters given as 

shown under the first column of Table  . 

 
TABLE   

PROPERTIES OF CABLES UTILIZED IN THE PARAMETRIC 
STUDY 

Parameters Example (1) Example (2) 

Net diameter, L (m)        

Sag=Rise, f/L (%)       

Load intensity, q (KN/m )          

Number of cable beams, N       

Spacing between cable 

beams, S(m) 
          

Cables extensional rigidity, 

EA (MN) 
        

Pretension force, H (KN)           

Edge ring extensional 

rigidity, EeAe(MN) 
            

These prototype characteristics can be used to yield the 

nondimensional parameters of the model, for which the 

preliminary charts have been produced using equations (  to 

 ). Hence: 

2

31.0 5.61 100 4
1.87 10

300000 4m

qSL

EA

      
        

     
; 

2

3600 4
2 10

300000 4m

H

EA

   
      

   
; and 

2
50000 4 42

125
300 4 56

e e

m

E A

EA

     
       

    
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Using preliminary curves of Fig.    for EeAe/EA      , the 

curve for qSL/EA = 1.87×10
- 

 can be plotted by interpolating 

the values of 1.5×10
- 

 and 2.0×10
- 

. Using the resulting 

curves, the model responses can be derived as recorded under 

the first column of Table  .  

These values can be scaled back to the prototype using 

equations (5 to 11) as given below: 

 
34.05 10 100 405w mm    ; 

41 10 100 10eu mm    ; 

32.80 10 300000 840sT KN    ; 

30.96 10 300000 288pT KN    ; 

3 56
6.40 10 300000 2560

42
pP KN  
     

 
; 

3 56
18.46 10 300000 7384

42
sP KN  
     

 
; and 

3 56
24.56 10 300000 9824

42
eP KN  
     

 
 

 

TABLE   

NONDIMENSIONAL PRELIMINARY RESPONSE OF THE 

MODELS USED IN THE ILLUSTRATIVE EXAMPLES 

Response Example (1) Example (2) 

w/L     ×10-      ×10-  

ue/L     ×10-      ×10-  

Ts/EA     ×10-      ×10-  

Tp/EA     ×10-      ×10-  

Pp/EA    0×10-      ×10-  

Ps/EA      ×10-       ×10-  

Pe/EA      ×10-       ×10-  

 

In order to comprehend the proposed method, a nonlinear 

analysis of the prototype is carried out. Table.   shows that the 

results obtained from the proposed method are in great 

agreement with that obtained using SAP2000. Where, the 

accuracy is almost   % for the net deflections,   % for the 

cable maximum tensions,   % for the cable minimum 

tensions,   % and 9 % for the upper and lower central rings 

tension forces respectively, and 9 % for the edge ring 

compression force.  

 

TABLE   

RESULTS OF THE ANALYSIS OF THE PROTOTYPE USED IN  
ILLUSTRATIVE EXAMPLE ( ) 

Response Present study SAP2000 
Minimization 

of T.P.E 

Max deflection, w 
(mm) 

            

Max sagging 

tension, Ts (KN) 
            

Min hogging 
tension, Tp (KN) 

            

Upper central 

ring tension, Pp 

(KN) 

               

Lower central 
ring tension, Ps 

(KN) 

               

Edge ring 
compression, 

Pe(KN) 

               

 

B. ILLUSTRATIVE EXAMPLE (2) 

For the second case of study the prototype has a different 

curvature from the model with the characteristics presented 

under the second column of Table  . The prototype parameters 

can be scaled to the model for which the preliminary charts 

have been produced by setting:  
2

31.15 5.23 60 4
1.50 10

155000 5m

qSL

EA

      
        

     
 

2

3387.5 4
1.6 10

155000 5m

H

EA

   
      

   
 

2
31250 4 42

168
155 5 36

e e

m

E A

EA

     
       

    
 

Using preliminary curves of Fig.    for EeAe/EA      , 

the model response can be determined as shown under the 

second column of Table  . These values can be scaled back to 

the prototype using equations (  to   ) similarly as in the 

previous example. Hence:  
33.50 10 60 210w mm    ; 

46 10 60 3.6eu mm    ; 

2

3 5
2.31 10 155000 559.45

4
sT KN  
     

 
; 

2.55

3 5
0.79 10 155000 216.31

4
pT KN  
     

 
; 

2.55

3 36 5
5.27 10 155000 1236.85

42 4
pP KN    
        

   
; 

2

3 36 5
15.26 10 155000 3167.81

42 4
sP KN    
        

   
; and 

2

3 36 5
20.30 10 155000 4214.06

42 4
eP KN    
        

   
 

Results due to nonlinear analyses and the preliminary method 

are given in Table  . It is noted that, the accuracy is 

approximately 9 % for the net deflections, 9 % for the cable 

maximum tensions, 9 % for the cable minimum tensions, 9 % 

and   % for the upper and lower central rings tension forces 

respectively, and 9 % for the edge ring compression force. 
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TABLE   

RESULTS OF THE ANALYSIS OF THE PROTOTYPE USED IN  ILLUSTRATIVE EXAMPLE (2) 

Response Present study SAP2000 Minimization of T.P.E 

Max deflection, w (mm)             

Max sagging tension, Ts (KN)                

Min hogging tension, Tp (KN)                

Upper central ring tension, Pp (KN)                   

Lower central ring tension, Ps (KN)                   

Edge ring compression, Pe(KN)                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 9 
THE PRELIMINARY RESPONSE OF THE CONVEX CABLE BEAMS ROOF FOR SAG/RISE TO SPAN RATIO f = 4% L, LOAD 

INTENSITY qSL/EA = 1.0×10-3 to 3.0×10-3, PRETENSION FORCE H/EA = 1×10-3 to 5×10-3, EDGE RING RIGIDITY EeAe/EA = 125. 

Triangular distributed load,   qSL/EA = 1×10-3 

 

103 H/EA 103  w/L 103  Ts/EA 103  Tp/EA 103  Pp/EA 103  Ps/EA 103   Pe/EA 

1 2.9875 1.5185 0.4437 2.9828 10.0222 12.8498 

2 2.2125 2.2828 1.2827 8.5789 15.0837 23.3829 

3 1.8625 3.1040 2.1681 14.4941 20.5164 34.5949 

4 1.6750 3.9403 3.0578 20.4383 26.0403 45.9347 

5 1.5625 4.7839 3.9473 26.3862 31.6174 57.3170 

Triangular distributed load,   qSL/EA = 2×10-3 

2 4.3125 2.8765 1.0916 6.1076 18.9866 24.7880 

3 3.6750 3.6235 1.6157 11.9488 23.9226 35.4591 

4 3.2875 4.4108 2.5179 17.9713 29.1207 46.5415 

5 3.0500 5.2177 3.4278 24.0136 34.4569 57.7812 

Triangular distributed load,   qSL/EA = 3×10-3 

3 5.4125 4.1713 1.4545 9.7128 27.5277 36.7969 

4 4.8750 4.9044 2.3545 15.7355 32.3587 47.5285 

5 4.5375 5.6697 3.2692 21.8354 37.4094 58.5515 

 

 

 
TABLE 10 

THE PRELIMINARY RESPONSE OF THE CONVEX CABLE BEAMS ROOF FOR SAG/RISE TO SPAN RATIO f = 4% L, LOAD 

INTENSITY qSL/EA = 1.0×10-3 to 3.0×10-3, PRETENSION FORCE H/EA = 1×10-3 to 5×10-3, EDGE RING RIGIDITY EeAe/EA = 167. 

Triangular distributed load,   qSL/EA = 1×10-3 

 

103 H/EA 103  w/L 103  Ts/EA 103  Tp/EA 103  Pp/EA 103  Ps/EA 103   Pe/EA 

1 2.9125 1.5437 0.4733 3.1695 10.1942 13.2012 

2 2.1625 2.3395 1.3434 8.9820 15.4614 24.1555 

3 1.8250 3.1903 2.2584 15.1031 21.0903 35.7611 

4 1.6250 4.0560 3.1785 21.2497 26.8032 47.4900 

5 1.5125 4.9289 4.0973 27.3846 32.5769 59.2598 

Triangular distributed load,   qSL/EA = 2×10-3 

2 25.5412 2.9298 0.9734 6.5032 19.3391 25.5412 

3 36.6081 3.7063 1.8810 12.5718 24.4746 36.6081 

4 48.0967 4.5229 2.8120 18.7963 29.8679 48.0967 

5 59.7236 5.3582 3.7470 25.0416 35.3915 59.7236 

Triangular distributed load,   qSL/EA = 3×10-3 

3 5.2875 4.2509 1.5488 10.3489 28.0443 37.9453 

4 4.7625 5.0128 2.4805 16.5628 33.0846 49.0711 

5 4.4250 5.8075 3.4242 22.8758 38.3367 60.4835 
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TABLE 11 

THE PRELIMINARY RESPONSE OF THE CONVEX CABLE BEAMS ROOF FOR SAG/RISE TO SPAN RATIO f = 4% L, LOAD 

INTENSITY qSL/EA = 1.0×10-3 to 3.0×10-3, PRETENSION FORCE H/EA = 1×10-3 to 5×10-3, EDGE RING RIGIDITY EeAe/EA = 250. 
 

Triangular distributed load,   qSL/EA = 1×10-3 

 

103 H/EA 103  w/L 103  Ts/EA 103  Tp/EA 103  Pp/EA 103  Ps/EA 103   Pe/EA 

1 2.8500 1.5727 0.5038 3.3702 10.3847 13.5940 

2 2.1125 2.4006 1.4079 9.4131 15.8643 24.9813 

3 1.7750 3.2827 2.3549 15.7522 21.7048 37.0088 

4 1.5875 4.1793 3.3069 22.1181 27.6280 49.1576 

5 1.4750 5.0838 4.2577 28.4653 33.6076 61.3434 

       

Triangular distributed load,   qSL/EA = 2×10-3 

 

1 7.3625 2.6632 0.8666 5.9533 17.6898 23.1051 

2 4.1250 2.9869 1.0393 6.9434 19.7154 26.3497 

3 3.5000 3.7958 1.9801 13.2336 25.0651 37.8449 

4 3.1375 4.6436 2.9440 19.6744 30.6673 49.7521 

5 2.9000 5.5101 3.9115 26.1389 36.3961 61.8032 

       
Triangular distributed load,   qSL/EA = 3×10-3 

 

3 5.1625 4.3361 1.6502 11.0219 28.6102 39.1744 

4 4.6625 5.1300 2.6146 17.4762 33.8659 50.7282 

5 4.3125 5.9554 3.5912 24.0043 39.3209 62.5730 

 

 

 
TABLE 12 

THE PRELIMINARY RESPONSE OF THE CONVEX CABLE BEAMS ROOF FOR SAG/RISE TO SPAN RATIO f = 4% L, LOAD 
INTENSITY qSL/EA = 1.0×10-3 to 3.0×10-3, PRETENSION FORCE H/EA = 1×10-3 to 5×10-3, EDGE RING RIGIDITY EeAe/EA = 500. 

 

Triangular distributed load,   qSL/EA = 1×10-3 

 

103 H/EA 103  w/L 103  Ts/EA 103  Tp/EA 103  Pp/EA 103  Ps/EA 103   Pe/EA 

1 2.7875 1.6037 0.5367 3.5938 10.5930 14.0125 

2 2.0625 2.4657 1.4772 9.8785 16.2954 25.8672 

3 1.7250 3.3815 2.4594 16.4430 22.3491 38.3445 

4 1.5375 4.3126 3.4452 23.0431 28.5156 50.9499 

5 1.4250 5.2500 4.4297 29.6209 34.7146 63.5798 

       
Triangular distributed load,   qSL/EA = 2×10-3 

 

1 7.0625 2.6838 0.8687 5.9635 17.8379 23.2456 

2 4.0250 3.0489 1.1094 7.4155 20.1289 27.2215 

3 3.4125 3.8910 2.0863 13.9506 25.7022 39.1747 

4 3.0625 4.7724 3.0851 20.6262 31.5383 51.5375 

5 2.8250 5.6726 4.0871 27.3253 37.4874 64.0394 

       
Triangular distributed load,   qSL/EA = 3×10-3 

 

3 5.0375 4.4282 1.7582 11.7438 29.2251 40.4936 

4 4.5500 5.2557 2.7579 18.4282 34.6996 52.5045 

5 4.2125 6.1145 3.7697 25.1977 40.3830 64.8010 
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The following symbols are used to indicate the pretention 

forces for Figs. 46 to   : 

 
  

 
 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 

 

 
Fig. 46. Response of the convex cable roof beams, for sag/rise to span ratio f = 4% L, load intensity qSL/EA = 0.25×10-3 to 5×10-3, pretension force H/EA = 

1×10-3 to 5×10-3, and edge ring rigidity EeAe/EA = 125. 
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Fig. 48. Response of the convex cable roof beams, for sag/rise to span ratio f = 4% L, load intensity qSL/EA = 0.25×10-3 to 5×10-3, pretension force H/EA = 

1×10-3 to 5×10-3, and edge ring rigidity EeAe/EA = 250. 
 

Fig. 47. Response of the convex cable roof beams, for sag/rise to span ratio f = 4% L, load intensity qSL/EA = 0.25×10-3 to 5×10-3, pretension force H/EA = 

1×10-3 to 5×10-3, and edge ring rigidity EeAe/EA = 167. 
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Fig. 48. Continued 
 

Fig. 49. Response of the convex cable roof beams, for sag/rise to span ratio f = 4% L, load intensity qSL/EA = 0.25×10-3 to 5×10-3, pretension force H/EA = 

1×10-3 to 5×10-3, and edge ring rigidity EeAe/EA = 500. 
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V. SYMMARY AND CONCLUSION 

This paper includes a study of the response of cable 

systems with deformable supports to present a preliminary 

analysis approach that has been examined and verified. It may 

be concluded that:  

   The stiffness of the sagging cables and curvature of 

hogging cables have a significant effects. 

   Although preliminary methods and simplifications that 

impose the supports of cable nets are infinite rigid give 

reasonable results. The stiffness of the edge ring must be 

included in the analysis.  

   It is essential to carry out a geometrically nonlinear static 

analysis in order to efficiently design cable structures, 

since the nonlinear behavior of the cables greatly affects 

the response of the rings which consequently behave in 

nonlinear manner. 

NOTATIONS 

q = Equivalent load intensity per unit area due to any load 

combination (dead, live, wind, …   etc.) 

qs = q × S The maximum load intensity per meter run on a 

cable beam. 

L = the roof diameter. 

l = central ring diameter. 

δ = l/L = the diameters ratio. 

N = number of convex cable beams. 

S = span between convex cable beams= π × L / N. 

fp = hogging cable rise. 

fs = sagging cable sag. 

Hp = hogging cable pretension force. 

Hs = sagging cable pretension force. 

EpAp = extensional rigidity of hogging cable.  

EsAs = extensional rigidity of sagging cable. 

EvAv = extensional rigidity of separator struts.  

ErAr = extensional rigidity of central rings.  

EeAe = extensional rigidity of the edge ring.  

EcAc = extensional rigidity of columns.  

MN = Mega Newton. 
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